Incremental Nonparametric Weighted Feature Extraction for OnlineSubspace Pattern Classification
نویسندگان
چکیده
In this paper, a new online method based on nonparametric weighted feature extraction (NWFE) is proposed. NWFE was introduced to enjoy optimum characteristics of linear discriminant analysis (LDA) and nonparametric discriminant analysis (NDA) while rectifying their drawbacks. It emphasizes the points near decision boundary by putting greater weights on them and deemphasizes other points. Incremental nonparametric weighted feature extraction (INWFE) is the online version of NWFE. INWFE has advantages of NWFE method such as extracting more than L-1 features in contrast to LDA. It is independent of the class distribution and performs well in complex distributed data. The effects of outliers are reduced due to the nature of its nonparametric scatter matrix. Furthermore, it is possible to add new samples asynchronously, i.e. whenever a new sample becomes available at any given time, it can be added to the algorithm. This is useful for many real world applications since all data cannot be available in advance. This method is implemented on Gaussian and non-Gaussian multidimensional data, a number of UCI datasets and Indian Pine dataset. Results are compared with NWFE in terms of classification accuracy and execution time. For nearest neighbour classifier it shows that this technique converges to NWFE at the end of learning process. In addition, the computational complexity is reduced in comparison with NWFE in terms of execution time.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملتحلیل ممیز غیرپارامتریک بهبودیافته برای دستهبندی تصاویر ابرطیفی با نمونه آموزشی محدود
Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...
متن کاملHyperspectral Data Classification Using Nonparametric Weighted Feature Extraction
In this paper, a new nonparametric feature extraction method is proposed for high dimensional multiclass pattern recognition problems. It is based on a nonparametric extension of scatter matrices. There are at least two advantages to using the proposed nonparametric scatter matrices. First, they are generally of full rank. This provides the ability to specify the number of extracted features de...
متن کاملPhishing website detection using weighted feature line embedding
The aim of phishing is tracing the users' s private information without their permission by designing a new website which mimics the trusted website. The specialists of information technology do not agree on a unique definition for the discriminative features that characterizes the phishing websites. Therefore, the number of reliable training samples in phishing detection problems is limited. M...
متن کاملNonparametric Fuzzy Feature Extraction for Hyperspectral Image Classification
Feature extraction plays an essential role in high-dimensional data classification. Linear discriminant analysis (LDA) is one of the most well-known methods for reducing data dimensionality in various fields. However, there are three inherent limitations when applying LDA to extract features. First, the number of features that can be extracted by LDA is the number of classes minus one at most. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.08133 شماره
صفحات -
تاریخ انتشار 2016